Multi-curves Framework with Stochastic Spread: A Coherent Approach to STIR Futures and Their Options

Marc Henrard
marc@opengamma.com
Abstract

The development of the multi-curves framework has mainly concentrated on swaps and related products. By opposition, this contribution focuses on STIR futures and their options. They are analysed in a stochastic multiplicative spread multi-curves framework which allows a simultaneous modelling of the Ibor rates and of the cash-account required for futures with continuous margining. The framework proposes a coherent pricing of cap/floor, futures and options on futures. In the final part of the note, we also propose the pricing formula for a financial product which does not exists yet, betting that it will be proposed soon.
Contents

1 Introduction and multi-curve framework ... 1
2 Multi-curves framework .. 3
3 Stochastic basis model .. 4
4 Framework analysis
 4.1 Spread rate dependency .. 6
 4.2 Ibor rate dynamic ... 7

5 STIR Futures .. 8
6 STIR Futures Options – Margin .. 9
7 STIR Futures Options – Premium ... 11
8 Ceci n’est pas une option .. 12
9 Conclusions ... 15
10 Technical lemmas ... 15
1 Introduction and multi-curve framework

The multi-curves framework, as described in Henrard (2010), is nowadays the standard pricing framework for interest rate derivative. Even if the framework, in his simplest version, does not take into account collateral, funding and CVA, it is an important building block of a complete financial valuation framework. The developments of the multi-curve framework have concentrated mainly on swaps and related products. The theory for Short Term Interest Rate (STIR) futures and their options in the multi-curve framework has not been as extensive.

When working in the multi-curve framework, one hypothesis often done is that the multiplicative spread between the rates of different curves is constant or deterministic. Such a simplifying hypothesis is important to obtain the explicit formulas used for forward rate agreements (FRA) and STIR futures from which curves are build. This simplifying assumption is used explicitly in Henrard (2010) and often implicitly in the literature and in software packages.

In the last years the literature proposed several ways to go beyond the constant spread hypothesis. This is the case in particular of Moreni and Pallavicini (2010), Kenyon (2010), Mercurio (2010) and Mercurio and Xie (2012) who propose different frameworks with non-constant spreads. Moreni and Pallavicini (2010) model the discounting curve with a HJM framework and the forward curve through Libor Market like approach. The spread is implicit from the dynamic of the two curves. Given the parsimonious nature of their model, the spread is modelled implicitly by the same stochastic process than the rate level and thus not fully stochastic. Kenyon (2010) models both curves with short rates but, beyond the fact that the short rate is ill-defined for the forward curves, his approach is arbitrage free only for zero spread, for reasons explained in Henrard (2010). Mercurio (2010) has a full market model on both curves with an implicit spread. The model requires a full parametrisation of the volatility for the discounting and the forward curve. Mercurio and Xie (2012) is devoted mainly to additive spread modelling. The impact of those frameworks on STIR futures is discussed only in Mercurio (2010) and Mercurio and Xie (2012). None of the above literature study the futures options.

In this paper we follow the path of Mercurio and Xie (2012) to model the spread explicitly. We do not use additive spreads but multiplicative ones in order to extend the standard results developed for a constant multiplicative spread.

The pricing of STIR futures in the single curve framework is described in numerous papers. The pricing in the constant volatility extended Vasicek (or Hull and White (1990) one-factor) model is proposed in Kirikos and Novak (1997) and extended to non-constant volatilities and some options in Henrard (2005). The pricing in a displaced diffusion Libor Market Model with skew is analised in Jäckel and Kawai (2006). Piterbarg and Renedo (2004) analyse the pricing of futures in some general stochastic volatility model to study the impact of the smile; they also analyse the pricing of options on futures. A recent description of the generic pricing of financial instruments with futures-style continuous margins can be found in (Hunt and Kennedy, 2004, Theorem 12.6). The results date back from Cox et al. (1981).

On the other hand there are very few articles analysing the pricing of options on STIR futures including the convexity adjustment for futures. Often when dealing with options on futures, the futures price is modelled as a risk factor by itself and not linked to the swap curve. The futures price is model by a martingale in the cash account numeraire but the futures prices are not explicitly linked to the dynamic of the forward rates. This is an important problem for risk management of portfolios including both swap based products and futures based products. The underlying are in both case the Ibor rates but they are modelled in non compatible ways.
The options on futures come in two flavours: one with daily margin like the futures themselves and one with up-front premium payment. The margined futures options are traded on LIFFE (USD, EUR, GBP, CHF) and Eurex (EUR). The futures options with up-front premium payment are traded on CME (USD) and SGX (JPY, USD). Note that all the traded options are American option. The options traded are standard options and mid-curve options. The standard options have an expiry date of the option similar to the last trading date of the futures. The mid-curve options are options with an underlying future with last trading date several years after the option expiry. For a difference of n years between the last trading date of the futures and the option expiry, the option is called a n-year mid-curve option. CME has recently\(^1\) extended the range of mid-curves options up to five-year mid-curve options.

The pricing of futures options in HJM models is discussed in Cakici and Zhu (2001) using numerical methods. They use simplified forward prices as substitute to futures prices and do not clarify which type of options (margined or not) they analyse. They do not provide explicit formulas for options on futures. An explicit formula for the options with premium payment in the single curve Gaussian HJM was proposed in Henrard (2005) and extended to the multi-curve framework with deterministic spread in Quantitative Research (2012b). The last reference also provide the pricing of margined options in the same framework.

The modelling of STIR futures and their options is more complex in the multi-curve framework than in the single curve case. To our knowledge this problem has never been previously analysed in the literature, except under the constant spread hypothesis in the above references. The interaction between the short rate that defines the cash account used for margining and the rate on which the futures are written is required and makes the modelling more subtle. To price a cap/floor, one can impose a dynamic for the forward Ibor rate and price the option using forward measure numeraire. Only the dynamic of the forward rate in that numeraire, where it is a martingale, is required. This simplification is not really available in the options on futures case. It would be possible to impose the dynamic on the futures price itself, which is a martingale in the cash account numeraire, but then one loses the interaction between the pricing of swaps and futures. We would have the price of futures and option on futures but not their links with the curves of the standard multi-curve framework\(^2\).

In this paper we propose a multi-curve framework with stochastic spread and Gaussian HJM dynamic for the risk free rates. In that framework, the prices of cap/floor, STIR futures and their options are described. The framework proposes a coherent pricing and risk of cap/floor, futures and options on futures. This coherency is paramount for portfolios containing a mixture of forward based and futures based instruments on Ibor. The framework proposed is based on Gaussian HJM model, potentially multi-factor. The model does not include the possibility to calibrate a smile.

Unfortunately in the market there are no (liquid) instruments related to the volatility of risk-free (short term) rates. It is in general very difficult to calibrate the discounting part of multi-curve models to market instruments due to the lack of such market instruments. In the model we use, the direct calibration of the short-rate model parameters is problematic.

One important feature of our approach is that the pricing formula for margined option on futures can be implemented directly from quotes available in the market from swaps, futures and cap/floor. Some of the model parameters (like the dependency coefficient a) do not need to be estimated/calibrated. Their impact on pricing can be read directly from other market instruments.

In the last section of the note, we analyse a financial product that does not exist (yet). In

\(^1\)The first trading date was March 11th, 2013.

\(^2\)It is possible to work directly in the futures curve framework as described in Henrard (2012b), but then some supplementary hypothesis are required to linked those curves to swaps and FRA.
the linear exchange traded world, it is possible to trade single STIR futures, which are similar to over-the-counter (OTC) FRA, and pack, bundle of STIR futures and swap futures, which are similar to OTC swaps, potentially forward starting. In the option exchange traded world, it is possible to trade single STIR future options, which are similar to OTC cap and floors. On one hand, the exchange traded world is richer than the OTC world in the sense that you can trade mid-curve options, which have no real liquid equivalent in OTC instruments. But on the other hand, the exchange traded world does not have the equivalent of swaptions, which are one of the most liquid OTC option product. The question is not if but when this type of product will be offered\(^3\) on exchanges. This type of optional product could be offered through options on swap futures but also through options on packs and bundles. This is the bet we make and propose a pricing formula for options on packs and bundles with daily margining. The future will tell us if our bet will remain finance fiction or will become finance premonition.

2 Multi-curves framework

The multi-curves framework used here is not presented in the standard way through pseudo-discount factors. We prefer to use a description closer to the one of Henrard (2012b) as it does not presuppose the way the forward curve data is presented. The relevant features of the approach are repeated below. The forward curve can still be expressed by ratios of pseudo-discount factors as a particular case. The reader can still implement the method using the ratio of pseudo-discount factors as his preferred implementation choice. We restrict ourself to a single currency framework as the instruments we analyse are all single currency.

D The instrument paying one unit in \(u \) (risk free) is an asset for each \(u \). Its value in \(t \) is denoted \(P_D(t, u) \). The value is continuous in \(t \).

The existence hypothesis for the Ibor coupons reads as

I The value of a \(j \)-Ibor floating coupon is an asset for each tenor \(j \) and each fixing date. Its value is a continuous function of time.

The curve description approach is based on the following definitions.

Definition 1 (Forward Ibor rate) The forward curve \(F_j^I(t, u, v) \) is the continuous function such that,

\[
P_D(t, t_2)\delta F_j^I(u, v) = P_D(t, u) \quad (1)
\]

is the price in \(t \) of the \(j \)-Ibor coupon with fixing date \(t_0 \), start date \(u \), maturity date \(v \) \((t \leq t_0 \leq u = \text{Spot}(t_0) < v)\) and accrual factor \(\delta \).

We also use the notation \(F_j^I(v) \) for \(F_j^I(u, v) \). As the difference between \(u \) and \(v \) is given by the period \(j \), it is usually precise enough and a shorter notation. We also defined the forward risk free rate as

Definition 2 (Forward risk free rate) The risk free forward rate over the period \([u, v]\) is given at time \(t \) by

\[
F_r^{FD}(u, v) = \frac{1}{3} \left(\frac{P_D(t, u)}{P_D(t, v)} - 1 \right) \quad (2)
\]

\(^3\)There are options on financially settled swap futures on CBOT, but with almost no liquidity.
The multiplicative spread is defined by the following definition.

Definition 3 (Multiplicative spread) The multiplicative spread between the risk free forward rate and the Ibor forward rate is

\[
\beta^I_t(u, v) = \frac{1 + \delta F^I_t(u, v)}{1 + \delta F^D_t(u, v)}. \tag{3}
\]

The definition of multiplicative spread used here is equivalent to the standard one, as defined in Henrard (2010). We use the forward rate as building blocks instead of the discount factors.

3 Stochastic basis model

A term structure model describes the behavior of \(P^D(t, u)\). When the discount curve \(P^D(t, \cdot)\) is absolutely continuous, which is something that is always the case in practice as the curve is constructed by some kind of interpolation, there exists \(f(t, u)\) such that

\[
P^D(t, u) = \exp \left(- \int_t^u f(t, s)ds \right). \tag{4}
\]

The short rate associated to the curve is \((r_t)_{0 \leq t \leq T}\) with \(r_t = f(t, t)\). The cash-account numeraire is \(N_t = \exp(\int_0^t r_s ds)\).

In this paper we focus on the Gaussian HJM (Heath et al. (1992)) framework. In that framework, the equation for the risk free rate in the cash account numeraire are

\[
df_t(v) = \sigma(t, v) \cdot \nu(t, v) dt + \sigma(t, v) \cdot dW_t
\]

where \(\sigma\) is a multi-dimensional and deterministic function and

\[
\nu(t, u) = \int_t^u \sigma(t, s)ds.
\]

The filtration associated to the Brownian motion \(W_t\) is denoted \(\mathcal{F}_t\).

The integrated volatility of the zero-coupon risk free bond is denoted

\[
\alpha^2 = \alpha^2(\theta_0, \theta_1, u, v) = \int_{\theta_0}^{\theta_1} |\nu(s, u) - \nu(s, v)|^2 ds
\]

For convexity adjustments, we will also need the interaction between forward risk free rates and instantaneous rates

\[
\gamma = \gamma(\theta_0, \theta_1, u, v) = \exp \left(\int_{\theta_0}^{\theta_1} (\nu(\tau, v) - \nu(\tau, u)) \cdot \nu(\tau, v) d\tau \right).
\]

We propose to analyse the multi-curves framework with a stochastic multiplicative spread approach. The idea of the framework is to model the multiplicative spread \(\beta^I_t(v)\) as a function of the risk-free rate level and an independent martingale \(\mathcal{X}^I_t(v)\):

\[
1 + \delta F^I_t(u, v) = f(F^D_t(u, v), \mathcal{X}^I_t(v))(1 + \delta F^D_t(u, v)) \tag{5}
\]
The multiplicative spread is function of the level of rate and an independent random variable
Henrard
(2010). The random variable \(X \) with used in a way that the martingale hypothesis is satisfied with \(x \). In this section we analyse the impact of the framework on the spread dynamic.

4 Framework analysis

In this section we analyse the impact of the framework on the spread dynamic.
4.1 Spread rate dependency

The general description in Equation 6 of multiplicative spread is split in two parts. The first one, comprising the part with an exponent α, is the part of the spread that depends on the level of (risk free) rates. This is the systematic part, similar to the part multiplied by a coefficient α in Mercurio and Xie (2012). When the coefficient is 0, there is not dependency of the spread on the rate. There is no systematic change of the spread level with the rates level.

In the following graphs, we have represented some examples of frameworks with different coefficients. The starting forward risk free rate F^D_0 is 2.00%, the Ibor forward rate is $F^j_0 = 2.20\%$ and the horizon on which we look at the spread is one year. The different volatilities are $\alpha(0, 1) = 0.005$ and $\sigma_X = 0.0002$.

The first graph, in Figure 1, analyses the change of spread with the level of rates F^D_i. The red line, which is almost horizontal, represents the additive spread $F^j_t - F^D_t$ in absence of stochastic part and for $\alpha = 0$. When the coefficient α move away from 0, some dependency between the level of rate and the spread is introduced. When $\alpha > 0$, the spread increases when the rate increase above its original level. When $\alpha < 0$, the opposite behaviour appears. Note that the exponent α is on the quantity $1 + \delta F^D_i$. This quantity is always positive as it is a ratio of assets. The quantity β^j is this well defined for any value of α (positive or negative) and any value of F^D_t.

![Figure 1: The additive spread $F^j_t - F^D_t$ for different levels of risk free rate F^D_t. The rate is in percent and the spread in basis points. The red line is the spread when no level dependent part is used ($\alpha = 0$). The gray lines represent the spreads for different levels of dependency as displayed on the graph.](image)

The second part of the spread is the multiplicative independent factor X^j_t. A priori this variable can take any value and this, independently of the level of rates. We have selected for the variable the form (7). For that form we have represented on Figure 2 the spreads for X^j with one standard
deviation on each side of its mean 0. The graph represents three sets of curves. Each set has a different dependency coefficient α and a different colour. In each set the upper curve is for a change of the independent variable of -1 standard deviation and the lower curve is for a change of +1 standard deviation.

Figure 2: The additive spread $F^j_t - F^{LD}_t$ for different levels of risk free rate F^{LD}_t. The rate is in percent and the spread in basis points.

The independent stochastic part create more possibility of changes in the spreads. This is the reason for which it was introduced. With the mild volatility used in the example, the spread can change around their initial value but not to the point that negative spread have meaningful probabilities to appear.

4.2 Ibor rate dynamic

Using the spread dependency functions (5) and (6), the form of the independent martingale (7) and the dynamic of the forward risk free rate described in Lemma 2, the solution for the forward Ibor rate can be written in the $P^{D}(\cdot, v)$ numeraire as

$$1 + \delta F^j_{\theta}(v) = \beta^j_0 X^j_{\theta} \frac{x^j(\theta)}{(1 + \delta F^{LD}_0(v))^a} (1 + \delta F^{LD}_0(v))^{1+a}$$

$$= (1 + \delta F^j_{\theta}(v)) \exp \left(-Y^v_{\theta} - \frac{1}{2} \sigma_Y^2 \right)$$

with $Y^v_{\theta} = X^V_{\theta} + (1 + a)X^v_{\theta}$ and $\sigma_Y^2(\theta) = \sigma^2_X(\theta) + (1 + a)\sigma^2(0, \theta)$. The random variable Y_{θ} is normally distributed with mean 0 and variance σ_Y^2 in the $P^{D}(\cdot, v)$ numeraire.
A similar equation can be written in the cash account numeraire:

\[1 + \delta F_t^j(v) = (1 + \delta F_0^j(v)) \exp \left(-Y_\theta - \frac{1}{2} \sigma_Y^2 \right) \gamma(0, \theta, u, v)^{1+a} \]

with \(Y_\theta = X_\theta^X + (1 + a)X_\theta \).

The Ibor forward dynamic is the same as for the forward risk free dynamic but with a different volatility. The price of cap/floor in that framework have a form very similar to the price of risk free rate cap/floor in the Gaussian HJM framework.

Theorem 1 (Cap/floor prices) In the Gaussian HJM stochastic spread model, the price of a cap of strike \(K \) and expiry \(t \) is given by

\[C_0 = \frac{1}{\delta} \int P^D(0, v) \left((1 + \delta F_0^j)N(\kappa + \sigma_Y(\theta)) - (1 + \delta K)N(\kappa) \right) \]

with

\[\kappa = \frac{1}{\sigma_Y(\theta)} \left(\ln \left(\frac{1 + \delta F_0^j}{1 + \delta K} \right) - \frac{1}{2} \sigma_Y^2(\theta) \right). \]

The formula is very similar to the formula obtained with the constant spread hypothesis \(S_0 \). Such a formula can be found in Quantitative Research (2012a).

5 STIR Futures

In this section we analyse the price of the STIR futures. The futures is characterised by a fixing (or last trading) date \(t_0 \) and a reference Ibor rate on the period \([u, v] \) with an accrual factor \(\delta \). The futures pays a continuous margining based on their price \(\Phi_i \).

Theorem 2 Let \(0 \leq t \leq t_0 \leq u \leq v \). In the stochastic multiplicative spread framework for multicurves with hypotheses \(D \) and \(I \), the price of the futures fixing in \(t_0 \) for the period \([u, v] \) with accrual factor \(\delta \) is given in \(t \) by

\[\Phi_t^i = 1 + \frac{1}{\delta} - \frac{1}{\delta}(1 + \delta F_t^j(v))\gamma(t, t_0, v)^{1+a}. \]

Proof: Using the generic pricing futures price process theorem,

\[\Phi_t^i = \mathbb{E}^N \left[1 - F_{t_0}^j \bigg| G_t \right] \]

where \(\mathbb{E}^N \) is the cash account numeraire expectation. The future price can be written as

\[1 - F_{t_0}^j = 1 + \frac{1}{\delta} - \frac{1}{\delta} \frac{X_{t_0} x(t_0)}{X_t x(t)} \beta_i^j \frac{(1 + \delta F_{t_0}^D)^{1+a}}{(1 + \delta F_{t_0}^D)^a} \]

The important part in the expected value is

\[(1 + \delta F_{t_0}^D(v))^{1+a} = (1 + \delta F_{t_0}^D(v))^{1+a} \exp \left(-(1 + \alpha)X - \frac{1}{2}(1 + a)^2 \alpha(t, t_0) \right) \frac{x(t)}{x(t_0)} \gamma^{1+a}(t, t_0, v) \]
with the exponential term having a expected value of 1. This gives

$$E \left[1 - F^D_{t_0} \right] = 1 + \frac{1}{\delta} - \frac{1}{\delta} \beta_t \frac{(1 + \delta F^D_t(v))^{1+\alpha}}{(1 + \delta F^D_t(v))^\alpha} \gamma^{1+\alpha}$$

$$= 1 + \frac{1}{\delta} - \frac{1}{\delta} (1 + \delta F^D_t(v)) \gamma^{1+\alpha}$$

where we have used that X_{t_0} is independent of X.

Note that the pricing formula reduces to the one proposed in Henrard (2010) in the deterministic spread hypothesis when $\alpha = 0$. The independent part of the spread X has no impact on the futures price.

The price of a futures on the Ibor rate is reduce to the price a forward adjusted by the convexity adjustment on the risk free rate and by the multiplicative factor describing the volatility of the spread dependency on rates.

The futures have different convexity adjustments for the same forward rate dynamic (the same volatility σ_Y) but different split between risk free and spread part. At the extreme, when $\alpha = -1$, the Ibor rate is independent of the risk free rate and there is no convexity adjustment.

The price formula allows also to write the forward rate as a function of the futures price

$$F^D_t(v) = \gamma(t, t_0, v)^{-1-\alpha} \left(\frac{1}{\delta} - (1 - \Phi^D_t) \right) - \frac{1}{\delta}. $$

6 STIR Futures Options – Margin

In this section we analyse the options on STIR futures with daily margining. There is a margining process on the option itself similar to the margining process on the underlying futures. Let θ be the option expiry date and K its strike price. For the futures itself, we use the same notation as in the previous section.

The futures options have usually an American feature. Due to the margining process, the American options have the same price as the European options. This general observation for options with continuous margining can be found in Chen and Scott (1993).

The price of options on futures with daily margin in the Gaussian HJM model in the multi-curves framework with deterministic spread was proposed in Quantitative Research (2012b). Here we extend it to the multiplicative stochastic spread.

Due to the margining process on the option, the price of the option with margining is

$$E \left[(\Phi_\theta - K)^+ \right] = E \left[((1 - K) - R_\theta)^+ \right].$$

The notation $\tilde{K} = 1 - K$ is used for the strike rate.

Theorem 3 (Option with continuous margin) Let $0 \leq \theta < t_0 < u \leq v$. The value of a STIR futures call (European or American) option of expiry θ and strike K with continuous margining in the Gaussian HJM with stochastic spread multi-curves model is given in θ by

$$C_0 = \frac{1}{\delta} \left(\left(1 + \delta \tilde{K} \right) N(-\kappa_\gamma) - \left(1 + \delta F^D_0 \right) \gamma(0, t_0)^{1+\alpha} N(-\kappa_\gamma - \sigma_Y(\theta)) \right)$$

where κ_γ is defined by

$$\kappa_\gamma = \frac{1}{\sigma_Y(\theta)} \left(\ln \left(\frac{1 + \delta F^D_0}{1 + \delta \tilde{K}} \gamma(0, t_0)^{1+\alpha} \right) - \frac{1}{2} \sigma_Y^2(\theta) \right).$$
The price of a STIR futures put option is given by

\[P_0 = \frac{1}{\delta} \left((1 + \delta F_0^j) \gamma(0, t_0)^{1+a} N(\kappa + \sigma_Y) - (1 + \delta K) N(\kappa) \right) \]

Proof: The futures price is given in Theorem 2. Using the generic pricing theorem we have

\[
C_0 = E_N \left[((\Phi_0 - K) +) \right] \\
= \frac{1}{\delta} E_N \left[((1 + \delta K) \right. \\
\left. -\gamma(\theta, t_0)^{1+a} \beta_0 \gamma(0, t_0)^{1+a} \exp \left(-Y_0 - \frac{1}{2} \sigma_Y^2 \right) \right]^+ \]

Using the form (7) for \(\gamma(0, t_0)^{1+a} \) and the definition of \(Y_0 \), the quantity in the parenthesis is positive when

\[
\gamma(0, t_0)^{1+a} (1 + \delta F_0^j) \exp \left(-Y_0 - \frac{1}{2} \sigma_Y^2 \right) < 1 + \delta K,
\]

i.e. it is positive when \(Y_0 > \sigma_Y \kappa \).

The price is then given by

\[
C_0 = \frac{1}{\delta} E_N \left[1_{\{Y > \sigma_Y \kappa\}} \left((1 + \delta K) - (1 + \delta F_0^j) \gamma(0, t_0)^{1+a} \exp \left(-Y_0 - \frac{1}{2} \sigma_Y^2 \right) \right) \right] \\
= \frac{1}{\delta} \int_{y > \kappa} \left((1 + \delta K) - (1 + \delta F_0^j) \gamma(0, t_0)^{1+a} \exp \left(-\sigma_Y y - \frac{1}{2} \sigma_Y^2 \right) \right) \exp \left(-\frac{1}{2} y^2 \right) dy \\
= \frac{1}{\delta} \left((1 + \delta K) N(-\kappa) - (1 + \delta F_0^j) \gamma(0, t_0)^{1+a} N(-\kappa - \sigma_Y) \right)
\]

The pricing formula is similar to a Black formula with a price \(1/\delta + \tilde{K} \), a forward \(1/\delta + F_0^j \) and a convexity adjustment on the forward (the factor \(\gamma \)). The structure of the option formula is not very different from the one of the cap/floor.

Note that the adjustment factor \(\gamma(0, t_0)^{1+a} \) which appears in the price formula and in the formula for \(\kappa \) is the same as the one in the price of futures. This factor can be obtained directly from the swap curve and the price of futures without calibrating the model itself.

Similarly the volatility parameter \(\sigma_Y(\theta) \) is the same one as in the cap/floor formula of Theorem 1. If the price of the cap/floor is available, the volatility parameter can be obtained directly. Even if a multi-factors model with time-dependent parameters is used, there is no need to calibrate each parameter individually; it is enough to obtain the total volatility parameter \(\sigma_Y \).

A pricing of options on futures coherent with swaps, futures and cap/floor can be obtain from the above instruments in the proposed framework with very light calibration. The required calibration does not fit the model parameters but constants deduced from the model parameters (\(\gamma^{1+a} \) and \(\sigma_Y(\theta) \)) which can be read almost directly form the market instruments.

The formula in Theorem 3 can be written in term of futures price and strike as

\[
C_0 = \left(1 - K + \frac{1}{\delta} \right) N(-\kappa_{\gamma}) - \left(1 - \Phi_t + \frac{1}{\delta} \right) N(-\kappa_{\gamma} - \sigma_Y(\theta)).
\]
The sensitivity

<table>
<thead>
<tr>
<th>Tenor</th>
<th>Call DSC</th>
<th>Call FDW 3</th>
<th>Floor DSC</th>
<th>Floor FDW 3</th>
<th>Put DSC</th>
<th>Put FDW 3</th>
<th>Cap DSC</th>
<th>Cap FDW 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6M</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9M</td>
<td>0.00</td>
<td>169.96</td>
<td>0.00</td>
<td>166.92</td>
<td>0.00</td>
<td>-54.78</td>
<td>0.00</td>
<td>-54.17</td>
</tr>
<tr>
<td>12M</td>
<td>0.00</td>
<td>-219.44</td>
<td>-0.44</td>
<td>-215.51</td>
<td>0.00</td>
<td>70.73</td>
<td>-0.08</td>
<td>69.94</td>
</tr>
<tr>
<td>2Y</td>
<td>0.00</td>
<td>-25.52</td>
<td>-0.04</td>
<td>-25.06</td>
<td>0.00</td>
<td>8.23</td>
<td>-0.01</td>
<td>8.13</td>
</tr>
</tbody>
</table>

Table 1: Call/Put and Floor/Cap

Example

Using the above formulas we provide a sensitivity comparison between put/call on futures and cap/floor on Ibor rates.

7 STIR Futures Options – Premium

In this section we analyse the price of STIR futures options with up-front premium payment. Those options are traded for Eurodollar on CME and SGX and for JPY Libor on SGX. Let \(\theta \) be the option expiry date and \(K \) its strike price. For the futures itself, we use the same notation as in the previous sections.

The price of options on futures with up-front premium payment in the Gaussian HJM model in the one curve framework was first proposed in Henrard (2005). The extension to the multi-curves framework with deterministic spread is described in Quantitative Research (2012b). Here we extend it to the multiplicative stochastic spread framework.

The premium is paid up-front and the value of the European call option is

\[
C_0 = N_0 E^N \left[N_\theta^{-1} (\Phi_\theta - K) \right].
\]

The interaction between the stochastic parts of \(X^N_\theta \) and \(Y_\theta \) is given by

\[
\sigma_{NY}(t) = (1 + a^j) \int_0^t (\nu(\tau,u) - \nu(\tau,v)) \cdot \nu(\tau,t)d\tau.
\]

There is no part dependent on \(\nu_N \) as \(X_\theta \) is independent of \(W_t \).

The variance/co-variance matrix of the random variable \((X^N_\theta, Y_\theta)\) is given by

\[
\Sigma = \begin{pmatrix} \sigma_N^2(\theta) & \sigma_{NY}(\theta) \\ \sigma_{YN}(\theta) & \sigma_Y^2(\theta) \end{pmatrix}.
\]

Theorem 4 (Option with premium) Let \(0 \leq \theta \leq t_0 \leq u \leq \nu \). The value of a STIR futures call (European) option of expiry \(\theta \) and strike \(K \) with up-front premium payment in the stochastic multiplicative spread model is given in \(\theta \) by

\[
C_0 = \frac{1}{\delta} P^D(0, \theta) \left((1 + \delta \tilde{K}) N \left(-\kappa + \frac{\sigma_{NY}}{\sigma_Y} \right) - (1 + \delta F_0^\gamma(0,t_0)^{1+\alpha} \exp(-\sigma_{NY}) N \left(-\kappa - \sigma_Y + \frac{\sigma_{NY}}{\sigma_Y} \right) \right)
\]
where κ, γ is defined in Theorem 3.

The price of a STIR futures put option is given by

$$P_0 = \frac{1}{\delta} P^D(0, \theta) (1 + \delta F^j_0) \gamma(0, t_0)^{1+\alpha} \exp(-\sigma_{NY}) N \left(\kappa + \sigma_Y - \frac{\sigma_{NY}}{\sigma_Y} \right)$$

$$-(1 + \delta \tilde{K}) N \left(\kappa - \frac{\sigma_{NY}}{\sigma_Y} \right)$$

Proof: Using the same formulas as in the previous section,

$$\delta C_0 = P^D(0, \theta) E^{\mathbb{Q}} \left[\exp \left(X_i^N - \frac{1}{2} \sigma^2_N(\theta) \right) \right.$$

$$\left. \mathbb{1}_{\{Y > \sigma_{Y,2}\}} \left((1 + \delta \tilde{K}) - (1 + \delta F^j_0) \gamma(0, t_0)^{1+\alpha} \exp \left(-Y_\theta - \frac{1}{2} \sigma^2_Y(\theta) \right) \right) \right]$$

$$= P^D(0, \theta) \frac{N}{\sqrt{\Sigma}} \int_{\mathbb{R}} \exp \left(x_1 - \frac{1}{2} \sigma^2_N(\theta) \right) \exp \left(-\frac{1}{2} x^T \Sigma^{-1} x \right) dx_1$$

$$\left. \left((1 + \delta \tilde{K}) - (1 + \delta F^j_0) \gamma(0, t_0)^{1+\alpha} \exp \left(-x_2 - \frac{1}{2} \sigma^2_Y(\theta) \right) \right) \right) dx_2$$

$$= P^D(0, \theta) \left((1 + \delta \tilde{K}) N \left(-\kappa + \frac{\sigma_{NY}}{\sigma_Y} \right) \right.$$

$$\left. -(1 + \delta F^j_0) \gamma(0, t_0)^{1+\alpha} \exp(-\sigma_{NY}) N \left(-\kappa - \sigma_Y + \frac{\sigma_{NY}}{\sigma_Y} \right) \right)$$

Like for the options with margin, all the model constants can be deduced from futures and cap/floors, except σ_{NY}. The convexity adjustment $\gamma^{1+\alpha}$ is given by the futures and used in the computation of κ, γ. The cap/floor volatility σ_Y is used directly and in κ, γ computation.

The remaining parameter $\sigma_{NY}(\theta)$ has an expression close to $(1 + a) \ln \gamma(0, \theta, u, v)$. In a specific model, like Hull-White, it would be possible to obtain it without a full calibration.

The cap formula can be written directly a function of the futures as

$$C_0 = P^D(0, \theta) \left(\left(1 - K + \frac{1}{\delta} \right) N \left(-\kappa_\gamma + \frac{\sigma_{NY}}{\sigma_Y} \right) \right.$$

$$\left. - \left(1 - \Phi^j_0 + \frac{1}{\delta} \right) \exp(-\sigma_{NY}) N \left(-\kappa_\gamma - \sigma_Y + \frac{\sigma_{NY}}{\sigma_Y} \right) \right)$$

8 Ceci n’est pas une option

Ceci n’est pas une pipe.

La trahison des images, René Magritte, 1928.

Even if new options on futures have been added recently to the offering, the offer is still in some way incomplete. A single futures is the exchange traded equivalent of the OTC FRA, a pack is the equivalent to a one year forward starting swap and a bundle is the equivalent of a spot starting swap. On the option side, an option on a futures is the exchange traded equivalent of the OTC
caplet or floorlet. But where are the equivalent of swaption and forward starting swaptions? This is probably a missing instrument in the exchange traded offering. It is not an option for trader to trade the equivalent of swaptions in the futures world, hence the title of this section.

The filling of the missing offering could be achieved through options on swap futures (see Henrard (2012a) for an approach to the pricing of swap futures) or through the options on packs and bundles. To our knowledge none of those products are offered on any exchange. Given the push for more standardisation and exchange traded products, the question is which exchange will be the first to offer such a product?

Messieurs les Anglais, tirez les premiers !

Attributed by Voltaire to the (French) Comte d’Auteroche at the battle of Fontenoy, 1745

The XXIst century corporate warfare is probably not as courteous as the XVIIIth century real warfare and there will probably be no similar offer, but the question is open: who will shoot first?

On the other side the exchange traded offer is in some sense larger than the OTC one. There is no equivalent in the OTC world to the mid-curve options. Those option are interesting from a calibration perspective as they give the view of the market on the short term volatility of forward rates further down the curve. The availability of even a more complete offer would allow to hedge a larger set of financial risk (and to quantitative analyst to better calibrate their models).

To obtain an explicit formulas, we add an separability hypothesis on the stochastic part of the rate evolution $Y_\theta(v)$.

Sep The random variable $Y_\theta(v)$ satisfies

$$Y_\theta(v) = \sigma_Y(\theta, v) \tilde{Y}_\theta$$

with \tilde{Y}_θ standard normally distributed and identical for all v.

We will give a below a circumstance where this hypothesis is satisfied. The condition is inspired by the separability condition described in Carverhill (1994) for Markovian models and in Henrard (2003) to obtain explicit swaption formulas in Gaussian one-factor HJM models.

The options we want to price are margined options on a pack or on a bundle. Both results can be written in the same way. Let n be the number of futures in the pack or bundle, i.e. $n = 4$ for a pack and $n = 4 \times k$ for a k-year bundle. The expiration date is denoted θ and the strike is denoted nK. We write the strike as nK to emphasise that there are n futures composing the pack or bundle and they have an average strike of K. This also to make the final result easier to compare to the one futures result. The dates related to the n underlying futures are denoted t_i for the last trading dates and $[u_i, v_i]$ for the corresponding Ibor periods with accrual factors δ_i.

The quantity we want to compute is

$$C_0 = E^N \left[\sum_{i=1}^{n} \Phi^i_\theta(v_i) - nK \right]^+. $$

Using hypothesis **Sep**, the result on the futures price and on the dynamic of $1 + \delta F^i_\theta(v_i)$ in the
cash-account numeraire, the quantity in the parenthesis is equal to

\[
\sum_{i=1}^{n} \frac{1}{\delta_i} (1 + \delta_i \hat{K}) - \sum_{i=1}^{n} \frac{1}{\delta_i} (1 + \delta_i F_0^i(v_i)) \gamma^{1+\alpha}(\theta, t_i, u_i, v_i)
\]

\[
= \sum_{i=1}^{n} \frac{1}{\delta_i} (1 + \delta_i \hat{K}) - \sum_{i=1}^{n} \frac{1}{\delta_i} (1 + \delta_i F_0^i(v_i)) \exp \left(-\sigma_Y(\theta, v_i)Y_\theta - \frac{1}{2} \sigma_Y^2(\theta, v_i) \right) \gamma^{1+\alpha}(0, t_i, u_i, v_i)
\]

In a way very similar to what is done for swaptions in Henrard (2003), we define \(\kappa \) as the solution of

\[
\sum_{i=1}^{n} \frac{1}{\delta_i} (1 + \delta_i \hat{K}) - \sum_{i=1}^{n} \frac{1}{\delta_i} (1 + \delta_i F_0^i(v_i)) \exp \left(-\sigma_Y(\theta, v_i)\kappa - \frac{1}{2} \sigma_Y^2(\theta, v_i) \right) \gamma^{1+\alpha}(0, t_i, u_i, v_i) = 0 \quad (11)
\]

Like in the above mentioned result it can be proved that the solution of the equation is unique and non-singular. Any numerical method will solve it very efficiently.

The quantity in the expected value above is positive when \(Y > \kappa \). Using that result and computing the expected value of the quantity dependent of \(a \) the normal standard random variable using the usual integral approach, one gets

Theorem 5 The price of the option on pack or bundle, in the multi-curve framework \(D-I \) with multiplicative stochastic spread \(SMS \) under the separability hypothesis \(Sep \) is given by

\[
\sum_{i=1}^{n} \frac{1}{\delta_i} (1 + \delta_i \hat{K}) N(-\kappa) - \sum_{i=1}^{n} \frac{1}{\delta_i} (1 + \delta_i F_0^i(v_i)) \gamma^{1+\alpha}(0, t_i, u_i, v_i) N(-\kappa - \sigma_Y(\theta, v_i)).
\]

where \(\kappa \) is the solution of Equation 11.

To obtain a particular case of the separability condition \(Sep \), we base the hypothesis to the features of the one-factor extended Vasicek (or Hull-White) model

SepV The volatility \(\sigma \) satisfies

\[
\nu(\tau, u) - \nu(\tau, v) = H(u, v)g(\tau)
\]

with \(H : \mathbb{R}^2 \to \mathbb{R} \) and the spread random variable \(X^X \) satisfies

\[
X_0^X(u, v) = H(u, v) \int_0^\theta g^X(\tau) \cdot dW^X_\tau
\]

where \(H \) is the same function as above and \(W^X_\tau \) is a Brownian motion independent of \(W_\tau \).

The pricing of swaptions in the same framework requires a two-dimensional integral that can not be solved explicitly. One dimension can be solved and leads to formula similar to the one used for swaptions in the G2++ framework (see Brigo and Mercurio (2006)). The results on swaption will be presented in a forthcoming separated note.
9 Conclusions

Modelling the relation between risk free rates and Ibor rates is important for the pricing of STIR futures and their options. The simplifying assumption of a deterministic basis does not provide rich enough behaviours to match the historical market dynamic.

In this note we propose to model the spread through a stochastic multiplicative spread approach. The Gaussian HJM with multiplicative stochastic spread described leads to explicit formulas to futures and futures options.

For futures options with daily margin, the model parameters can be read almost directly from other market instruments: swaps, futures and cap/floor. A coherent framework incorporating all those related products can be easily obtained without requiring heavy calibration procedure. The case of the futures options with up-front payment is similar except that one of the second order parameters can not be read directly from the market.

We also propose the pricing formula for margined options on packs and bundles. Those instruments are not traded yet in the exchanged traded market and are one of the missing link in the exchange traded volatility offer. We predict that, given the recent push to exchange traded instruments, those instruments or exchange traded options on swap futures will be offered in the near future.

10 Technical lemmas

Lemma 1 (HJM dynamic of forward rates – cash account numeraire) In the Gaussian HJM model, the risk free forward rate satisfies

\[1 + \delta F_t^D = (1 + \delta F_s^D) \exp \left(-X_t - \frac{1}{2} \sigma^2(s, t, u, v) \right) \gamma(s, t, v) \]

with \(X_t = X_t(s, u, v) = \int_s^t (\nu(\tau, u) - \nu(\tau, v))dW_\tau \) a normally distributed random variable in the \(N \)-numeraire.

Lemma 2 (HJM dynamic of forward rates – forward numeraire) In the Gaussian HJM model, the risk free forward rate satisfies

\[1 + \delta F_t^D = (1 + \delta F_s^D) \exp \left(-X_t^v - \frac{1}{2} \sigma^2(s, t, u, v) \right) \]

with \(X^v = X^v_t(s, u, v) = \int_s^t (\nu(\tau, u) - \nu(\tau, v))dW^v_\tau \) a normally distributed random variable in the \(P^D(., v) \)-numeraire.

Lemma 3 (Cash account) The cash-account \(N_t \) satisfies, in the cash-account numeraire,

\[N_t^{-1} = P^D(0, t) \exp \left(X_t^N - \frac{1}{2} \sigma_N^2(t) \right) \]

with \(X^N_t = \int_0^t \nu(\tau, t)dW_\tau \) and \(\sigma_N^2(t) = \int_0^t \nu^2(\tau, t)d\tau \).

The following technical Lemma was proved in (Henrard, 2004, Theorem 8).

Lemma 4 (Normal integral)

\[\frac{1}{\sqrt{2\pi} \sqrt{|\Sigma|}} \int_{\mathbb{R}} \exp \left(x_2 - \frac{1}{2} \sigma_2^2 - \frac{1}{2} x^T \Sigma^{-1} x \right) dx_2 = \frac{1}{\sigma_1} \exp \left(- \frac{1}{2} \sigma_1^2 (x_1 - \sigma_{12})^2 \right). \]
References

OpenGamma Quantitative Research

About OpenGamma

OpenGamma helps financial services firms unify their calculation of analytics across the traditional trading and risk management boundaries.

The company’s flagship product, the OpenGamma Platform, is a transparent system for front-office and risk calculations for financial services firms. It combines data management, a declarative calculation engine, and analytics in one comprehensive solution. OpenGamma also develops a modern, independently-written quantitative finance library that can be used either as part of the Platform, or separately in its own right.

Released under the open source Apache License 2.0, the OpenGamma Platform covers a range of asset classes and provides a comprehensive set of analytic measures and numerical techniques.